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MS received 23 October 1972 

Abstract. The logrithmic derivative of the wavefunction has been put in the form of an 
infinite continued fraction by the repeated use of successive differentiations of the Schro- 
dinger equation. The eigenvalues and eigenfunctions for bound states have been obtained 
either by terminating or by a suitable procedure of summing the infinite continued fraction. 
Various examples have been considered. For scattering problems the relevant Jost function 
has been calculated from the various convergents of the continued fraction. The resemblance 
of the procedure to the Pade approximants has been noted. Our results on phase-shift 
calculation have been compared with those obtained by other means. 

1. Introduction 

Various approximation techniques to solve the Schrodinger equation for quantum- 
mechanical problems have been developed. The perturbation method was the first 
to be used and is now well known. This method is equally suitable for the study of both 
bound state and scattering problems. In addition to this, the Fredholm solution (Jost 
and Pais 1951) to the equivalent Schrodinger equation in an integral form is sometimes 
found useful. This method is essentially an analytic continuation of the usual Born 
perturbation series. Recently there have been many attempts to improve upon the 
standard perturbation method. The main concern in all these approaches has been to 
obtain a quicker and more convergent summation procedure. Of these, mention must 
be made of the determinantal techniques used by Baker (1958) and Blankenbecler et a1 
(1960) in connection with the solution of the integral equation of the D function of the 
N / D  method of solution of the dispersion integral relations. Among the other existing 
methods we must emphasize the factorization technique (Infeld and Hull 1951, Morse 
and Feshback 1953) originally due to Schrodinger. The method essentially consists of 
constructing a series of ladder operators similar to those of the creation and annihilation 
operators of quantum mechanics for the harmonic oscillator case. It is also significant 
because it generates a group structure satisfying a suitable algebra for the ladder opera- 
tors. In fact the list of the approximation techniques so far developed is quite an inex- 
haustive one. To complete this brief summary, we would like to mention a recent 
nonperturbative method proposed in the literature by Biswas et a1 (1971) based on the 
infinite Hill determinant. The efficiency of this method is amply justified by applying 
the method to calculate the eigenvalue of the one dimensional Axzm anharmonic oscillator 
problem. The most interesting part of the work lies in the fact that the various Pade 
approximants of the perturbation series for the energy eigenvalue problem of the AxZm 
oscillator do sum closely to the exact values obtained by the Hill determinant technique. 
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It is well known that the relevant perturbation series mentioned above is a divergent 
one and various Pade approximants are just the approximation of the series by rational 
fractions (Baker 1965). In this connection we would like to point out how a continued 
fraction technique can be developed directly on the Schrodinger differential equation 
itself to determine the energy eigenvalues and scattering phase shifts in a given problem. 
The similarity of the present method with the Pade approximants is obvious. The 
various successive convergents to the infinite continued fraction closely resemble the 
various Pade approximants to the relevant problem. To illustrate our method, let us 
consider the normal harmonic oscillator eigenvalue problem. 

The Hamiltonian for the problem is 

(1.1) P‘ H = - + i m o 2 x 2  
2m 

leading to the following differential equation H$ = E$ for the energy spectra. This 
reduces, with the definitions 

2E 
Ao’ 

< = (?) l i 2 ,  e = -  $ = exp(-+x’)f, 

f” - 25 f ’  + (-E - 1) f = 0. 
to 

Equation (1.2) can be written as 

1 - E  - f‘ - 
f - - 2 < + f ” / f ’  

on differentiating (1.2) we have 

3 - e  - f ” 
f ’  - 25 +f”’lf” 
_ -  

continuing this process and finally substituting these back in (1.3), we have the following 
infinite continued fraction as the solution : 

f ’  1-• 
f -  
_ -  

3--E . 
- 2 t +  -2<+ * .  

It is interesting to note that the continued fraction (1.5) terminates when e = 2n+ 1, 
n = 0 ,1 ,2 , .  . . , and then the corresponding wavefunctions are easily found to be 

fo = 1, f1 = 25, f, = 252 - 1,. 

It is trivial to recognize that these are the usual Hermite polynomial solutions to the 
harmonic oscillator problem with the accepted energy eigenvalues. To see rigorously 
that the nth eigenfunction is 

$At) = H A 0  exp(-3t2), 
we note from (1.5) that for the nth eigenvalue we must have 

- 2n F‘ - = - (say). 
-2n+2  F 

f:, _ -  
- 2 5 + * . .  

f. -25+  
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Hence for n + 1, we have 

- 2 n - 2  - 2 n - 2  -- f b + l  - 
2n - 25 + F'jF' 

- 2 n - 2  - 2 n - 2  

Thus the consistency requirement suggests that 

d 
- ( - 2 5 F + F ' )  = ( - 2 n - 2 ) F  
de 

F" - 25F' + 2nF = 0 
or 

which is just the equation for the nth Hermite polynomial. 
In the next section we illustrate further our method to discuss the hydrogen atom 

problem and bound state eigenvalues for an S wave exponential case. In 4 3 we general- 
ize our method to the determination of the phase shift in the scattering problem. The 
efficiency of our method has been shown by comparing our calculations of a few con- 
vergents to the exact results already available. For the purpose of comparison of the 
phase shifts, we have chosen the exactly solvable potential model of Bhattacharjie and 
Sudarshan (1962).  

2. Hydrogen atom and other solvable potentials 

In this section we continue our discussion on the use of the continued fraction technique 
by applying the method to a few solvable problems. In the last section we only men- 
tioned the case of a one-dimensional harmonic oscillator. Below, we consider the 
hydrogen atom problem, the exponential and Hulthen's potential and finally the three- 
dimensional isotropic harmonic oscillator problem (Schiff 1968). The equation to be 
solved is, 

(2 .1)  (Vz + V)@ = E$ 

where V is the central potential, and h = 2m = 1. Writing I) = U(r)&&l,4)/r, we 
have the equation for U as 

Introducing the variable p = Xr, x = J( - E )  and 

U(r) = p'+ e-%@), 

we have 

u"+2 ("p' - - 1  ) U ' + ( E  V 2(1+1) )a=O. 

2.1. Hydrogen atom problem 

Z e 2  
V(r)  = -- 

r 
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then equation (2.3) becomes 

d20 do 
p‘-+(2l+2-p’),+{n-(l+ l)}v = 0 

dp” dP 

where 

p’ = 2p. 
Ze2 
2x ’ 

n = -  

The solution of equation (2.5) is given by 

U‘ -n+l+l  - -  - 
o p’( - n + I +  2) * (21+ 2 - p‘) + 

(21 + 3 - p’) +. . . 
The continued fraction (2.6) terminates when 

n = l+nr+l ,  n r = 0 , 1 , 2  , . . . .  
This gives 

The corresponding wavefunctions are 

U0 = 1 ,  

or in general, 

U, = 21+2-p’, v 2  = ~’~-2p‘(21+3)+(21+3)(21+2), .  . . 

nr 1 
= - F (-nr,21+2,p’) fl (21+m+1), 

(21+1)’ m = O  

(2.5) 

where ,F ,  is the confluent hypergeometric function and it is connected with the associated 
Laguerre polynomial L:!:’ ,(p’). Hence we have completely solved the hydrogen atom 
problem. 

2.2. Exponential potential 

V ( r )  = - A  exp( - r /a ) .  

The radial Schrodinger equation for 1 = 0 for the potential (2.9) is 

(2.9) 

(2.10) 
d2 U 
-+{E+Aexp(-r/a)}U = 0. 
dr2 

Putting 

U = e-%(p),  P = xr, x = J ( -E )  

and introducing the variable 5 = exp( - p / 2 p ) ,  we obtain 

d2v b dv 
-+ - -+c2v = 0 
d t 2  5 d5 

(2.1 1)  
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where b = 1 + 4 ~ a ,  c2 = 4a2A. To solve (2.11), we put 

X < = -  
2ic' 4 5 )  = exp( - iC5)X(5), 

Then we get 

d2X dX b 
dx dx 2 

x T + ( b - x ) - - - X  = 0. 

The solution is 

X'  $b - _ -  - 
X x(+b+ 1) ' (b-x)+ 

(b - x  + 1)+.  . . 

(2.12) 

(2.13) 

The above continued fraction terminates when 

$b = -n, n = 0 , 1 , 2  ) . . . .  

This gives the energy eigenvalues 

E = (2n+1)2 
16a2 * 

To show that the wavefunction is the Bessel function, we rewrite equation (2.13) as 

XI - n  - _ -  
Xn ( - n + l )  ' 

(b-x)+(b-x-  1 ) + .  . I 
This gives, 

collecting all these, we find that 

U - e-Xr e-"~,F,(  - n ,  -2n; 2ic5) 

where 

5 = exp( -r/2a). 

Using Kummer's relation (see, eg Watson 1944) 

e-CZIFI(-p,  -2p, 2cz) = o~l(+-p,+c2z2) ,  

and the result 

($2)'' 

r(V+i)O 
J,(z) = ~ F ( v +  1, -a.') 

it is easy to see that 

U - Jk(c() = Jk(2a,/A exp( - r/2a) 

where 

kZ = -4a2E > 0 for E < 0. (2.14) 
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2.3. Hulthen's potential ( I  = 0) 

The equation to be solved is 

for this, we make the transformation, 

U = e-ikrg(r), z = e-wr 

and get the equation 

z (1-z )g"+{c- (a+b+ 1)z)g'-abg = 0 

where a, b, c are given by 

ik ,/(-k2+A,u) 
c1 c1 

ik ,/(-kz+Ap) 
P P 

2ki 
c =  1 + - - .  

P 

a = - +  

b = - -  

The solution of (2.17) in the form of a continued fraction is given by 

g' ab _ -  - 
z( 1 - z )  { ab + (a + b + I)] ' g 

{ c - ( a +  + ')'} { c + 1 - ( a  + b + 3)z) +. . . 
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(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

The continued fraction (2.19) terminates when a or b is a negative integer, that is, 

n = 0, 1,2, ... n = -a, -b  

and, therefore, the energy eigenvalues are given by 

To show that the solution of (2.19) is a hypergeometric function, we rewrite (2.19) as, 

(2.20) - n(a + b + n)  s:,= 
z(l-z){ -n(a+b+n)+(a+b+ 1 ) )  

{ c + 1 - (a  + b+ 3)z) + . . . g n  { c - - (a+  b+ l)z)+ 

then it is easy to see that 

2.4. Threedimensional isotropic harmonic oscillator 

V(r) = + p Z r z .  
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The radial part of the Schrodinger equation for the three-dimensional isotropic harmonic 
oscillator is 

(2.21) 

where 

U = Rr,  1. = p a ,  kZ = 2pE; h = 1. 

Putting U = r’+ exp( - $ A V z )  W(r)  and introducing the variable 5 = ArZ, we obtain 

5 W” + { ( 1  + 3) - t} W’ - {+((I + 3) - +s} w = 0 (2.22) 

where s = k2/2A = Elm. 
The continued fraction development for the above equation gives, 

W’ - {+((I +;)-is} 
W ({+(-(I+$)+ 1-33) . - _  

+ 3 - 5) +((l+;+ 1) - t) + . . , 

This gives the energy spectrum for the three-dimensional harmonic oscillator as, 

E = 0((I+3+2nr), nr = 0, 1,2 , .  . . 

and the wavefunction is 

$n,,l,m = cn,.,’,~’ exp(-tAr2),F,(- n r ,  ’+;, ’r2)L(’, 4). 

(2.23) 

3. Scattering problem 

To apply our method to calculate the phase shift for potential scattering, we follow 
Bargmann (1949). Accordingly we put g(k ,  I )  = eik”f(k, I )  where f( f k, r )  are two 
independent solutions of the usual radial Schrodinger equation (for S wave) which are 
deiined by their asymptotic behaviour for large r, namely, 

lim ekik’f( f k,  r )  = i. 
r+ 00 

The equation for g(k ,  I )  is then given by 

g” - 2kig‘ = V ( r ) g  (3.1) 

where 

lim g(k ,  r )  +. 1 
r+ w 

for every real nonvanishing k .  I t  is now easy to connect the phase shift through the 
expression 

where 

f ( k )  = f ( k ,  I = 0). 
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To find f ( k )  we use the continued fraction development for g'(k, r)/g(k,  r). Writing 
X = g'(k, r)/g(k, r), we have (Ince 1956) 

1 
X =  (3.3) 

Pl 
p2 

Qi+- 
Q2+.. .  

Qo + 

where 

and 

Rewriting (3.3) in the form 

b2 X = a ,+  
b3 
.. 

* bn +- 
an 

(3.4) 

We find that a, = 0, a2  = Qo,.  . , , a,, = Qn-2, b, = 1, b3 = P,, . . . , b, = Pn-2. If 
p Jqn, pn-  l /qn-  1 ,  pn-2/qn-2 are the nth, (n- 1)th and (n-2)th convergent6 of the infinite 
continued fraction X .  Then 

(3.5) x = 3 = an~n-1+bn~n-2 
4n a~n-l+bnqn- , '  

We can then write 

using the matrix recurrence relation we easily find that 

The equation (3.6) is a crucial formula for our further numerical analysis. 
To obtain the phase shifts we need the following recurrence relations: 

(3.6) 

where Q: = d"Q,/dr" etc. Then using all these results we can easily obtain the phase 
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shifts. From equations (3.4), (3.5) and (3.6) we have for f ( k ,  r = 0) in the nth convergent 

f ( k )  = exp { - JOm (h) dr). 
q n  k , r  

(3.7) 

We notice from equation (3 .7)  that various convergents for f ( k )  are rational fractions, 
which closely resemble various Padk approximants. 

If the continued fraction is convergent, then in the limit n + io we get the exact 
answer for our phase shift. The necessary and sufficient condition for the convergence 
of the continued fraction is given by a theorem due to Perron (see eg Ince 1956, Wall 
1948) which states that the continued fraction converges and has the value f’lfif f # 0 
and (i) P, + P,  Q, -+ Q as n + CO, (ii) the roots p1 and p 2  of the equation p 2  = Qp+P 
are of unequal modulus and (iii) if lp21 < / p l l  then 

lim/f(n)ll’n < I p 2 / - l  

provided that (p2j # 0. When (p21 = 0 the last condition is replaced by the condition 
that the limit is finite. 

To see the efficiency of our method, we first discuss a few solvable cases. For the 
exponential potential and some other solvable potentials proposed by Bhattacharjie and 
Sudarshan (1962), we find that the first few convergents almost lead to the exact answers. 
We tabulate below the calculations of the phase shifts for a few cases of known solvable 
potentials. The convergence of our calculations is remarkable. 

Table 1. The phase shift of scattering from the exponential potential V ( r )  = -1 e-‘. 6 ,  
represents the phase shift calculated by the Sasakawa (1963) model. The numbers in brackets 
denote the approximations of the continued fraction method. 

k I 0.5 1 .o 1.5 2.0 2.5 

1.0 6cF 0.201(10) 0.434(10) 0.638(10) 0.804(10) 0.981(10) 
6, 0.200 0.399 0.593 0.782 0.962 

1.5 6 ,~  0.149(9) 0.295(8) 0.439(9) 0.579(9) 0.715(9) 
6,  0.144 0.277 0.398 0.509 0.614 

2.0 6cF 0’117(6) 0.231(7) 0.344(7) 0.45q8) 0.564(8) 
S, 0,113 0.213 0.302 0,381 0,448 

2.5 6cF 0.096(6) 0.190(5) 0.283(5) 0.375(5) 0.465(5) 
6s 0.092 0.174 0.247 0.312 0.362 

3.0 6cF 0.081(5) 0.160(4) 0.239(4) 0.318(5) 0.395(5) 
6s 0.078 0.147 0.209 0.266 0.308 

Table 2. The phase shift of scattering from the potential V ( r )  = -2a2/coshz ar with 
ff = 1.0. 

Exact value 
k tan SCF (Bhattacharjie and Sudarshan 1962) 

~ 

1.0 1.032(10) 1.OOO 
1.5 0.668(7) 0.667 
2.0 0.500(7) 0.500 
2.5 0.400(5) 0.400 
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Consideration of the present method to various other physical phenomena including 
the application to the Bethe-Salpeter equation and the Regge trajectory calculation will 
be reported elsewhere. 
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